added typing & more code cleanup

This commit is contained in:
2023-03-03 13:13:28 +00:00
parent 2b6fe45b42
commit 3e677d9ddd
3 changed files with 27 additions and 19 deletions

View File

@@ -16,6 +16,7 @@ def load_excluded_filenames(submissions_dir_name: str) -> list[str]: # helper f
try:
df = pd.read_csv(csv_file_path)
filename_list = df['exclude_filename'].tolist() # get the values of the 'filename' column as a list
filename_list = [ f.lower() for f in filename_list ] # convert to lowercase for comparison with submission files
print(f'[INFO] Using CSV file with list of excluded file names: {csv_file_path}')
return filename_list
except Exception as e: # any exception, print error and return empty list to continue without any excluded file names
@@ -28,7 +29,7 @@ def get_hashes_in_dir(dir_path: str, excluded_filenames: list = []) -> list: #
hash_list = []
for subdir, dirs, files in os.walk(dir_path): # loop through all files in the directory and generate hashes
for filename in files:
if filename not in excluded_filenames: # do not hash for inspection file names in the excluded list
if filename.lower() not in excluded_filenames: # convert to lowercase for comparison with excluded files & do not hash if in the excluded list
filepath = os.path.join(subdir, filename)
with open(filepath, 'rb') as f:
filehash = hashlib.sha256(f.read()).hexdigest()
@@ -62,10 +63,16 @@ def inspect_for_duplicate_hashes(hashes_csv_file_path: str): # main function fo
csv = pd.read_csv(hashes_csv_file_path)
df = pd.DataFrame(csv) # df with all files and their hashes
drop_columns = ['filepath', 'filename'] # only need to keep 'student id' and 'sha256 hash' for groupby later
df = df.drop(columns=drop_columns) # clear not needed columns
duplicate_hash = df.loc[df.duplicated(subset=['sha256 hash'], keep=False), :] # all files with duplicate hash - incl. files from the same student id
hash_with_multiple_student_ids = duplicate_hash.groupby('sha256 hash').agg(lambda x: len(x.unique())>1) # true if more than 1 unique student ids (= files with the same hash by multiple student ids), false if unique student id (= files from the same student id with the same hash)
suspicious_hashes_list = hash_with_multiple_student_ids[hash_with_multiple_student_ids['Student ID']==True].index.to_list() # list with duplicate hashes - only if different student id (doesn't include files from same student id)
df_clean = df.drop(columns=drop_columns) # clear not needed columns
duplicate_hash = df_clean.loc[df_clean.duplicated(subset=['sha256 hash'], keep=False), :] # all files with duplicate hash - incl. files from the same student id
# agg() for 'Student ID' True if more than 1 in groupby (= files with the same hash by multiple student ids)
# False if unique (= files from the same student id with the same hash)
hash_with_multiple_student_ids = duplicate_hash.groupby('sha256 hash').agg(lambda x: len(x.unique())>1)
# list with duplicate hashes - only if different student id (doesn't include files from same student id)
suspicious_hashes_list = hash_with_multiple_student_ids[hash_with_multiple_student_ids['Student ID']==True].index.to_list()
files_with_suspicious_hash = df[df['sha256 hash'].isin(suspicious_hashes_list)] # df with all files with duplicate/suspicious hash, excludes files from the same student id
df_suspicious = files_with_suspicious_hash.sort_values(['sha256 hash', 'Student ID']) # sort before output to csv