import os from datetime import datetime import csv import hashlib import pandas as pd CSV_DIR = os.path.join(os.getcwd(), 'csv') def load_excluded_filenames(submissions_dir_name: str) -> list[str]: # helper function for hashing all files csv_file_path = os.path.join(CSV_DIR, f'{submissions_dir_name}_excluded.csv') if not os.path.exists(csv_file_path): # if csv file with excluded file names for submission does not exist print(f'[WARNING] Cannot find CSV file with list of excluded file names: {csv_file_path}\n[INFO] All files will be hashed & inspected') return [] # return empty list to continue without any excluded file names else: # if csv file with excluded file names for submission exists try: df = pd.read_csv(csv_file_path) filename_list = df['exclude_filename'].tolist() # get the values of the 'filename' column as a list filename_list = [ f.lower() for f in filename_list ] # convert to lowercase for comparison with submission files print(f'[INFO] Using CSV file with list of excluded file names: {csv_file_path}') return filename_list except Exception as e: # any exception, print error and return empty list to continue without any excluded file names print(f'[WARNING] Unable to load / read CSV file with list of excluded file names: {csv_file_path}\n[INFO] All files will be hashed & inspected') print(f'[INFO] Error message: {e}') return [] def get_hashes_in_dir(dir_path: str, excluded_filenames: list = []) -> list: # helper function for hashing all files hash_list = [] for subdir, dirs, files in os.walk(dir_path): # loop through all files in the directory and generate hashes for filename in files: if filename.lower() not in excluded_filenames: # convert to lowercase for comparison with excluded files & do not hash if in the excluded list filepath = os.path.join(subdir, filename) with open(filepath, 'rb') as f: filehash = hashlib.sha256(f.read()).hexdigest() hash_list.append({ 'filepath': filepath, 'filename': filename, 'sha256 hash': filehash}) return hash_list def hash_submissions(submissions_dir_path: str) -> str: # main function for hashing all files os.makedirs(CSV_DIR, exist_ok=True) submissions_dir_name = os.path.abspath(submissions_dir_path).split(os.path.sep)[-1] # get name of submission/assignment by separating path and use rightmost part excluded_filenames = load_excluded_filenames(submissions_dir_name) csv_file_name = f'{submissions_dir_name}_file_hashes_{datetime.now().strftime("%Y%m%d-%H%M%S")}.csv' csv_file_path = os.path.join(CSV_DIR, csv_file_name) with open(csv_file_path, 'w', newline='') as csvfile: # open the output CSV file for writing fieldnames = ['Student ID', 'filepath', 'filename', 'sha256 hash'] writer = csv.DictWriter(csvfile, fieldnames=fieldnames) writer.writeheader() for student_dir_name in os.listdir(submissions_dir_path): # loop through each student dir to get hashes for all files per student student_dir_path = os.path.join(submissions_dir_path, student_dir_name) hashes_dict = get_hashes_in_dir(student_dir_path, excluded_filenames) # dict with hashes for all student files - except for 'excluded' file names for d in hashes_dict: d.update({'Student ID': student_dir_name}) # update hash records with student id writer.writerows(hashes_dict) print(f'[INFO] Created CSV file with all files & hashes in {submissions_dir_name}\nCSV file: {csv_file_path}') return csv_file_path def inspect_for_duplicate_hashes(hashes_csv_file_path: str): # main function for finding duplicate / suspicious hashes csv = pd.read_csv(hashes_csv_file_path) df = pd.DataFrame(csv) # df with all files and their hashes drop_columns = ['filepath', 'filename'] # only need to keep 'student id' and 'sha256 hash' for groupby later df_clean = df.drop(columns=drop_columns) # clear not needed columns duplicate_hash = df_clean.loc[df_clean.duplicated(subset=['sha256 hash'], keep=False), :] # all files with duplicate hash - incl. files from the same student id # agg() for 'Student ID' True if more than 1 in groupby (= files with the same hash by multiple student ids) # False if unique (= files from the same student id with the same hash) hash_with_multiple_student_ids = duplicate_hash.groupby('sha256 hash').agg(lambda x: len(x.unique())>1) # list with duplicate hashes - only if different student id (doesn't include files from same student id) suspicious_hashes_list = hash_with_multiple_student_ids[hash_with_multiple_student_ids['Student ID']==True].index.to_list() files_with_suspicious_hash = df[df['sha256 hash'].isin(suspicious_hashes_list)] # df with all files with duplicate/suspicious hash, excludes files from the same student id df_suspicious = files_with_suspicious_hash.sort_values(['sha256 hash', 'Student ID']) # sort before output to csv try: submissions_dir_name = os.path.basename(hashes_csv_file_path).split('_file_hashes_')[0] csv_out = hashes_csv_file_path.rsplit('_', 1)[0].replace('file_hashes', 'suspicious_') + datetime.now().strftime("%Y%m%d-%H%M%S") + '.csv' df_suspicious.to_csv(csv_out, index=False) print(f'[INFO] Created CSV file with duplicate/suspicious hashes in {submissions_dir_name}\nCSV file: {csv_out}') except Exception as e: exit(f'[ERROR] Something went wrong while trying to save csv file with suspicious hashes\nError message: {e}')